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Abstract
Environmental sensors are crucial for monitoring weather conditions and the impacts of climate change. However,
it is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in
remote regions like Antarctica. Probabilistic machine learning models can suggest informative sensor placements
by finding sites that maximally reduce prediction uncertainty. Gaussian process (GP) models are widely used for
this purpose, but they struggle with capturing complex non-stationary behaviour and scaling to large datasets. This
paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues. A ConvGNP
uses neural networks to parameterise a joint Gaussian distribution at arbitrary target locations, enabling flexibility
and scalability. Using simulated surface air temperature anomaly over Antarctica as training data, the ConvGNP
learns spatial and seasonal non-stationarities, outperforming a non-stationary GP baseline. In a simulated sensor
placement experiment, the ConvGNP better predicts the performance boost obtained from new observations than
GP baselines, leading to more informative sensor placements. We contrast our approach with physics-based sensor
placement methods and propose future steps towards an operational sensor placement recommendation system.
Our work could help to realise environmental digital twins that actively direct measurement sampling to improve
the digital representation of reality.

Impact Statement
This paper addresses the challenge of identifying intelligent sensor placements for monitoring environmen-
tal phenomena, using Antarctic air temperature anomaly as an example. The authors propose using a recent
machine learning model—a convolutional Gaussian neural process (ConvGNP)—which can capture com-
plex non-stationary behaviour and scale to large datasets. The ConvGNP outperforms previous data-driven
approaches in simulated experiments, finding more informative and cost-effective sensor placements. This
could lead to improved decision-making for monitoring weather conditions and climate change impacts.

© The Authors(s) 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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1. Introduction

Selecting optimal locations for placing environmental sensors is an important scientific challenge. For
example, improved environmental monitoring can lead to more accurate weather forecasting (Weiss-
mann et al., 2011; Jung et al., 2016). Further, better observation coverage can improve the representation
of extreme events, climate variability, and long-term trends in reanalysis models (Bromwich and Fogt,
2004) and aid their validation (Bracegirdle and Marshall, 2012). This is particularly important in remote
regions like Antarctica, where observations are sparse (Jung et al., 2016) and the cost of deploying
weather stations is high (Lazzara et al., 2012), motivating an objective model-based approach that pro-
vides an accurate notion of the informativeness of new observation locations. This informativeness can
then guide decision-making so that scientific goals are achieved with as few sensors as possible.

The above sensor placement problem has been studied extensively from a physics-based numerical
modelling perspective (Majumdar, 2016). Multiple approaches exist for estimating the value of current
or new observation locations for a numerical model. Examples include observing system simulation
experiments (Hoffman and Atlas 2016), adjoint methods (Langland and Baker, 2004), and ensemble
sensitivity analysis (ESA; Torn and Hakim, 2008). Using a numerical model for sensor placement
comes with benefits and limitations. One drawback is that numerical models can be biased, and this
can degrade sensor placements. This suggests that physics-based approaches could be supplemented by
data-driven methods that learn statistical relationships directly from the data.

Machine learning (ML) methods also have a long history of use for experimental design and sensor
placement (MacKay, 1992; Cohn, 1993; Seo et al., 2000; Krause et al., 2008). First, a probabilistic
model is fit to noisy observations of an unknown function f(x). Then, active learning is used to identify
new x-locations that are expected to maximally reduce the model’s uncertainty about some aspect of
f(x). The Gaussian process (GP; Rasmussen 2004) has so far been the go-to class of probabilistic
model for sensor placement and the related task of Bayesian optimisation1 (Singh et al., 2007; Krause
et al., 2008; Marchant and Ramos, 2012; Shahriari et al., 2016). Setting up a GP requires the user
to specify a mean function (describing the expected value of the function) and a covariance function
(describing how correlated the f(x) values are at different x-locations). Once a GP has been initialised,
conditioning it on observed data and evaluating at target locations produces a multivariate Gaussian
distribution, which can be queried to search for informative sensor placements.

GPs have several compelling strengths which make them particularly amenable to small-data
regimes and simple target functions. However, modelling a climate variable with a GP is challenging
due to spatiotemporal non-stationarity and large volumes of data corresponding to multiple predictor
variables. While non-stationary GP covariance functions are available (and improve sensor placement in
Krause et al. 2008 and Singh et al. 2010), this still comes with the task of choosing the right functional
form and introduces a risk of overfitting (Fortuin et al., 2020). Further, conditioning GPs on supple-
mentary predictor variables (such as satellite data) is non-trivial and their computational cost scales
cubically with dataset size, which becomes prohibitive with large environmental datasets. Approxi-
mations allow GPs to scale to large data (Titsias, 2009; Hensman et al., 2013), but these also harm
prediction quality. The above model misspecifications can lead to uninformative or degraded sensor
placements, motivating a new approach which can more faithfully capture the behaviour of complex
environmental data.

Convolutional neural processes (ConvNPs) are a recent class of ML models that have shown promise
in modelling environmental variables. For example, ConvNPs can outperform a large ensemble of cli-
mate downscaling approaches (Vaughan et al., 2021; Markou et al., 2022) and integrate data of gridded

1Bayesian optimisation differs slightly from sensor placement in that the task is to find the maximum (of minimum) a black-box
function f rather than reduce overall uncertainty about f .
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and point-based modalities (Bruinsma et al., 2023). One variant, the convolutional Gaussian neural pro-
cess (ConvGNP; Markou et al., 2022; Bruinsma et al., 2021), uses neural networks to parameterise a
joint Gaussian distribution at target locations, allowing them to scale linearly with dataset size while
learning mean and covariance functions directly from the data.

In this paper, simulated atmospheric data is used to assess the ability of the ConvGNP to model
a complex environmental variable and find informative sensor placements. The paper is laid out as
follows. Section 2 introduces the data and describes the ConvGNP model. Section 3 compares the Con-
vGNP with GP baselines with three experiments: predicting unseen data, predicting the benefit of new
observations, and a sensor placement toy experiment. It is then shown how placement informativeness
can be traded-off with cost using multi-objective optimisation to enable a human-in-the-loop decision-
support tool. Section 4 discusses limitations and possible extensions to our approach, contrasting
ML-based and physics-based sensor placements. Concluding remarks are provided in Section 5.

2. Methods

In this section we define the goal and data, formalise the problem tackled, and introduce the ConvGNP.

2.1. Goal and source data

We use reanalysis data to analyse sensor placement abilities. Reanalysis data are produced by fitting a
numerical climate model to observations using data assimilation (Gettelman et al., 2022), capturing the
complex dynamics of the Earth system on a regular grid. The simulated target variable used in this study
is 25 km-resolution ERA5 daily-averaged 2 m temperature anomaly over Antarctica (Figure 2a; Hers-
bach et al. 2020). For a given day of year, temperature anomalies are computed by subtracting maps of
the mean daily temperature (averaged over 1950–2013) from the absolute temperature, removing the
seasonal cycle. We train a ConvGNP and a set of GP baselines to produce probabilistic spatial inter-
polation predictions for ERA5 temperature anomalies, assessing performance on a range of metrics.
We then perform simulated sensor placement experiments to quantitatively compare the ConvGNP’s
estimates of observation informativeness with that of the GP baselines and simple heuristic placement
methods. The locations of 79 Antarctic stations that recorded temperature on February 15th, 2009 are
used as the starting point for the sensor placement experiment (black crosses in Figure 1), simulating a
realistic sensor network design scenario. Alongside inputs of ERA5 temperature anomaly observations,
we also provide the ConvGNP with a second data stream on a 25 km grid, containing surface eleva-
tion and a land mask (obtained from the BedMachine dataset; Morlighem 2020), as well as space/time
coordinate variables. For further details on the data sources and preprocessing see Appendix A.
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Figure 1. The ConvGNP. We have two context sets: ERA5 temperature anomaly observations and
6 gridded auxiliary fields, and we wish to make probabilistic predictions for temperature anomaly
over a vertical line of target points (blue dotted line in left-most panel). In the ConvGNP, a SetConv
layer fuses the context sets into a single gridded encoding (Figure B1, Gordon et al. 2020). A U-Net
(Ronneberger et al., 2015) takes this encoded tensor as input and outputs a gridded representation,
which is interpolated at target points X (t) and used to parameterise the mean and covariance of a
multivariate Gaussian distribution over y(t). The output mean vector µ is shown as a black line, with
10 Gaussian samples overlaid in grey. The heatmap of the covariance matrix K shows the magnitude
of spatial covariances, with covariance decreasing close to temperature anomaly context points.



4 Tom R. Andersson et al.

2.2. Formal problem set-up

We now formalise the problem set-up tackled in this study. First, we make some simplifying assump-
tions about the data to be modelled. We assume that data from different time steps, τ , are independent,
and so we will not model temporal dependencies in the data. Further, we only consider variables that
live in a 2D input space, as opposed to variables with a third input spatial dimension (e.g. altitude
or depth). This simplifies the 3D or 4D modelling problem into a 2D one. Models built with these
assumptions can learn correlations across 2D space, but not across time and/or height, which could be
important in forecasting or oceanographic applications.

At each τ , there will be particular target locations X (t)
τ ∈ RNt×2 where we wish to predict an

environmental variable y(t)
τ ∈ RNt (we assume that the target variable is a 1D scalar for simplicity, but

this need not be the case). Our target may be surface temperature anomaly along a line of points over
Antarctica (blue dotted line in left-most panel of Figure 1). We call this a target set Tτ = (X (t)

τ ,y
(t)
τ ).

The target set predictions will be made using several data streams, containingN -D observations Y (c)
τ ∈

RNc×N at particular locations X (c)
τ ∈ RNc×2. We call these data streams context sets (X (c)

τ ,Y
(c)
τ ),

and write the collection of all NC context sets as Cτ = {(X (c)
τ ,Y

(c)
τ )i}NCi=1. Context sets may lie on

scattered, off-grid locations (e.g. temperature anomaly observations at black crosses in left-most panel
in Figure 1) or on a regular grid (e.g. elevation and other auxiliary fields in the second panel of Figure 1).
We call the collection of context sets and the target set a task Dτ = (Cτ , Tτ ). The goal is to build a ML
model that takes the context sets as input and maps to probabilistic predictions for the target values y(t)

τ

given the target locationsX (t)
τ . Following Foong et al. 2020, we refer to this model as a prediction map,

π. Once π is set up, a sensor placement algorithm S will use π to propose K new placement locations
X∗ ∈ RK×2 based on query locationsX (s) ∈ RS×2 and a set of tasks {Dτj}Jj=1. Section 3.2 provides
details on how we implement S in practice.

Physics-based numerical models could be framed as hard-coded prediction maps, ingesting context
sets through data assimilation schemes and using physical laws to predict targets on a regular grid over
space and time. These model outputs are deterministic by default, but applying stochastic perturba-
tions to initial conditions or model parameters induces an intractable distribution over model outputs,
p(y(t)), which can be sampled from to generate an ensemble of reanalyses or forecasts. However, cur-
rent numerical models do not learn directly from data. In contrast, ML-based prediction maps will be
trained from scratch to directly output a distribution over targets based on the context data.

2.3. ConvGNP model

Most ML methods are ill-suited to the problem described in Section 2.2. Typical deep learning
approaches used in environmental applications, such as convolutional neural networks, require the data
to lie on a regular grid, and thus cannot handle non-gridded data (e.g. Andersson et al. 2021; Ravuri
et al. 2021). Recent emerging architectures such as transformers can handle off-the-grid data in princi-
ple, but in practice have used gridded data in environmental applications (e.g. Bi et al. 2022). Moreover,
they also need architectural changes to make predictions at previously unseen input locations. On the
other hand, Bayesian probabilistic models based on stochastic processes (such as GPs) can ingest data
at arbitrary locations, but it is difficult to integrate more than one input data stream, especially when
those streams are high dimensional (e.g. supplementary satellite data which aids the prediction task).
Neural processes (NPs; Garnelo et al., 2018a,b) are prediction maps that address these problems by
combining the modelling flexibility and scalability of neural networks with the uncertainty quantifi-
cation benefits of GPs. The ConvGNP is a particular prediction map π whose output distribution is a
correlated (joint) Gaussian with mean µ and covariance matrixK:

π(y(t);C,X (t)) = N (y(t);µ(C,X (t)),K(C,X (t))). (1)

The ConvGNP takes in the context setsC and outputs a mean and non-stationary covariance function of
a GP predictive, which can be queried at arbitrary target locations (Figure 1). It does this by first fusing
the context sets into a gridded encoding using a SetConv layer (Gordon et al., 2020). The SetConv
encoder interpolates context observations onto an internal grid with the density of observations captured
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by a ‘density channel’ for each context set (example encoding shown in Figure B1). This endows the
model with the ability to ingest multiple predictors of various modalities (gridded and point-based) and
handle missing data (Appendix B.5). The gridded encoding is passed to a U-Net (Ronneberger et al.,
2015), which produces a representation of the context sets with R = U-Net(SetConv(C)). The tensor
R is then spatially interpolated at each target location x(t)

i , yielding a vector ri and enabling the model
to predict at arbitrary locations. Finally, ri is passed to multilayer perceptrons f and g, parameterising
the mean and covariance respectively with µi = f(ri) and kij = g(ri)

Tg(rj). This architecture results
in a mean vector µ and covariance matrixK that are functions of C andX (t) (Equation 1).

Constructing the covariances via a dot product leads to a low-rank covariance matrix structure,
which is exploited to reduce the computational cost of predictions from cubic to linear in the number
of targets. Furthermore, the use of a SetConv to encode the context sets results in linear scaling with
the number of context points. This out-of-the-box scalability allows the ConvGNP to process 100,000
context points and predict over 100,000 target points in less than a second on a single GPU2.

NPs can be considered meta-learning models (Foong et al., 2020) which learn how to learn, mapping
directly from context sets to predictions without requiring retraining when presented with new tasks.
This is useful in environmental sciences because it enables learning statistical relationships (such as
correlations) that depend on the context observations. In contrast, conventional supervised learning
models, such as GPs, instead learn fixed statistical relationships which do not depend on the context
observations.

2.4. Training the ConvGNP

Training tasks Dτ are generated by first sampling the day τ randomly from the training period, 1950–
2013. Then, ERA5 grid cells are sampled uniformly at random across the entire 280× 280 input space,
with the number of ERA5 temperature anomaly context and target points drawn uniformly at random
from Nc ∈ {5, 6, . . . , 500} and Nt ∈ {3000, 3001, . . . , 4000}. The ConvGNP is trained to minimise
the negative log-likelihood (NLL) of target values y(t)

τ under its output Gaussian distribution using the
Adam optimiser. After each training epoch, the model is checkpointed if an improvement is made to the
mean NLL on validation tasks from 2014–2017. For further model and training details see Appendix B.

Figure 2. The ConvGNP extrapolates plausible scenarios away from data. a, ERA5 2 m temperature
anomaly on January 1st 2018; b-d, ConvGNP samples with ERA5 temperature anomaly context points
at Antarctic station locations (black circles). Comparing colours within the black circles across plots
shows that the ConvGNP interpolates context observations.

Once trained in this manner, the ConvGNP outputs expressive, non-stationary mean and covariance
functions. When conditioning the ConvGNP on ERA5 temperature anomaly observations and drawing
Gaussian samples on a regular grid, the samples interpolate observations at the context points and
extrapolate plausible scenarios away from them (Figure 2). Running the ConvGNP on a regular grid
with no temperature anomaly observations reveals the prior covariance structure learned by the model
(Figure 3). The ConvGNP leverages the gridded auxiliary fields and day of year inputs from the second

2Our ConvGNP (with 4.16M parameters) takes 0.88 s to process a total of 100,000 context points (21,600 temperature points
and 78,400 gridded auxiliary points) and predict over 100,000 target points on a 16 GB NVIDIA A4 GPU using TensorFlow’s
eager mode.
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context set to output highly non-stationary spatial dependencies in surface temperature, such as sharp
drops in covariance over the coastline (Figure 3a-c), anticorrelation (Figure 3a), and decorrelation over
the Transantarctic Mountains (Figure 3b). In Appendix D we contrast this with GP prior covariances and
further show that the ConvGNP learns seasonally-varying spatial correlation (Figure D1–Figure D3).
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Figure 3. The ConvGNP learns spatially-varying covariance structure. Prior covariance function,
k(x1,x2), with x1 fixed at the white plus location and x2 varying over the grid. Plots are shown for
three different x1-locations (the Ross Ice Shelf, the South Pole, and East Antarctica) for the 1st of June.
The most prominent section of the Transantarctic Mountains is indicated by the red dashed line in b.

3. Results

We evaluate the ConvGNP’s ability to model ERA5 2 m daily-average surface temperature anomaly
through a range of experiments, using GP baselines with both non-stationary and stationary covariance
functions. We use three GP baselines with different non-isotropic covariance functions: the exponenti-
ated quadratic (EQ), the rational quadratic (RQ), and the Gibbs kernel. The EQ and RQ are stationary
because the covariance depends only on the difference between two input points, k(x,x′) = k(x−x′).
The Gibbs covariance function is a more sophisticated, non-stationary baseline, where the correlation
length scale is allowed to vary over space (Figure C1). As noted in Section 2.3, there is no simple way
to condition vanilla GP models on multiple context sets; the GP baselines can only ingest the context
set containing the ERA5 observations and not the second, auxiliary context set. For more details on the
GPs, including their covariance functions and training procedure, see Appendix C.

3.1. Performance on unseen data

To assess the models’ abilities to predict unseen data, 30,618 tasks are generated from unseen test years
2018–2019 by sampling ERA5 grid cells uniformly at random with number of targets Nt = 2, 000 and
a range of context set sizesNc ∈ {0, 25, 50, . . . , 500} (Appendix B.1). For each task, we compute three
performance metrics of increasing complexity. The first metric, the root mean squared error (RMSE),
simply measures the difference between the model’s mean prediction and the true values. The second
metric, the mean marginal NLL, includes the variances of the model’s point-wise Gaussian distribu-
tions, measuring how confident and well-calibrated the marginal distributions are. The third metric, the
joint NLL, uses the model’s full joint Gaussian distribution, measuring how likely the true y(t) vector is
under the model. This quantifies the reliability of the model’s off-diagonal spatial correlations as well
as its marginal variances.

In general, the ConvGNP performs best, followed by the Gibbs GP, the RQ GP, and finally the
EQ GP (Figure 4). There are some exceptions to this trend. For example, the models produce similar
RMSEs for Nc < 100. This is likely because for small Nc the models revert to zero-mean predictions
away from context points (matching the zero-mean of temperature anomaly over the training period).
Another exception is that the Gibbs GP outperforms the ConvGNP on joint NLL for small Nc. This
may be because the ConvGNP’s training process biases learning towards ‘easier’ tasks (where Nc is
larger). Alternatively, the ConvGNP’s low-rank covariance parameterisation could be poorly suited to
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Figure 4. Test set results. Mean metric values versus number of context points on the test set. The joint
negative log-likelihood (NLL) is normalised by the number of targets. Error bars are standard errors.

small Nc. However, with increasing Nc, the ConvGNP significantly outperforms all three GP baselines
across all three metrics, with its performance improving at a faster rate with added data. When averag-
ing the results acrossNc, the ConvGNP significantly outperforms all three GP baselines for each metric
(Table E1). We further find that the ConvGNP’s marginal distributions are substantially sharper and
better calibrated than the GP baselines (Figure E1 and Figure E2), which is an important goal for prob-
abilistic models (Gneiting et al., 2007). Well-calibrated uncertainties are also key for active learning,
which is explored below in Section 3.2.

3.2. Sensor placement

Following previous works (Krause et al., 2008), we pose sensor placement as a discrete optimisation
problem. The task is to propose a subset of K sensor placement locations, X∗, from a set of S search
locations,X (s). In practice, to avoid the infeasible combinatorial cost of searching over multiple place-
ments jointly, a greedy approximation is made by selecting one sensor placement at a time. Within a
greedy iteration, a value is assigned to each query location x(s)

i using an acquisition function, α(x(s)
i , τ),

specifying the utility of a new observation at x(s)
i for time τ , which we average over J dates:

α(x(s)
i ) =

1

J

J∑
j=1

α(x(s)
i , τj). (2)

We use five acquisition functions which are to be maximised, defining a set of placement criteria
(mathematical definitions are provided in Appendix F):

JointMI: mutual information (MI) between the model’s prediction and the query sensor obser-
vation, imputing the missing value with the model’s mean at the query location, ȳ(s)

τ,i.
3 This criterion

attempts to minimise the model’s joint entropy by minimising the log-determinant of the output covari-
ance matrix, balancing minimising marginal variances with maximising correlation magnitude, which
can be viewed as minimising uncertainty about the spatial patterns (MacKay, 1992). The joint MI has
been used frequently in past work (Lindley, 1956; Krause et al., 2008; Schmidt et al., 2019).

MarginalMI: as above, but ignoring the off-diagonal elements in the models’ Gaussian distri-
butions and considering only the diagonal (marginal) entries. This criterion attempts to minimise the
model’s marginal entropy by minimising the log-variances in the output distribution.

DeltaVar: decrease in average marginal variance in the output distribution (similar to
MarginalMI but using absolute variances rather than log-variances). Previous works have used this
criterion for active learning both with neural networks (Cohn, 1993) and GPs (Seo et al., 2000).
ContextDist: distance to the closest sensor. This is a simple heuristic which proposes placements

as far away as possible from the current observations. While this is a strong baseline, non-stationarities
in the data will mean that it is sub-optimal. For example, a high density of sensors will be needed in
areas where correlation length scales are short, and a low density where they are large. Therefore, the
optimal sensor placement strategy should differ from and outperform this approach.

3A better approach would be to draw Monte Carlo samples over y(s)
τ,i, although this would be more costly – see Appendix F.
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Random: uniform white noise function (i.e. placing sensors randomly). The performance of this
criterion reflects the average benefit of adding new observations for a given model and context set.

The target locations X (t)
τ and search locations X (s) are both defined on a 100 km grid over Antarc-

tica, resulting in Nt = S = 1, 365 targets and possible placement locations. The context set locations
X (c)
τ are fixed at Antarctic temperature station locations (black circles in Figure 5) to simulate a realis-

tic network design scenario. We use J = 105 dates from the validation period (2014–2017), sampled at
a 14-day interval, to compute the acquisition functions. Heatmaps showing the above five acquisition
functions on theX (s) grid, using the ConvGNP for the model underlying the three uncertainty-reduction
acquisition functions, are shown in Figure 5. There are interesting differences between the model-based
acquisition functions of the ConvGNP, the Gibbs GP, and the EQ GP (Figure F1).

a

ConvGNP
JointMI

Placements x * Context x(c)

b

ConvGNP
MarginalMI

c

ConvGNP
DeltaVar

d

ContextDist

e

Random

Greater 

Figure 5. Acquisition functions and sensor placements for the ConvGNP and heuristic baselines.
Maps of acquisition function values α(x(s)

i ) for the initial k = 1 greedy iteration. The initial context
set X(c) is derived from real Antarctic station locations (black circles). Running the sensor placement
algorithm for K = 10 sensor placements results in the proposed sensor placementsX∗ (white pluses).
Each pixel is 100×100 km.

3.2.1. Oracle acquisition function experiment

By using sensor placement criteria that reduce uncertainty in the model’s predictions, one hopes that
predictions also become more accurate in some way. For example, the entropy of the model’s predictive
distribution is the expected NLL of the data under the model, so the decrease in entropy from a new
observation (i.e. the MI) should relate to the NLL improvement – assuming the model is well-specified
for the data. Further, if the model’s marginal distributions are well-calibrated, marginal variance relates
to expected squared error. Therefore, the JointMI, MarginalMI, and DeltaVar acquisition func-
tions should relate to improvements in joint NLL, marginal NLL, and RMSE, respectively. However, in
general, the strength of these relationships are unknown. In the toy setting of this study, where ERA5
is treated as ground truth and is known everywhere, these relationships can be examined empirically.

We compare the ability of the ConvGNP, Gibbs GP, and EQ GP to predict the benefit of new
observations based on the JointMI, MarginalMI, and DeltaVar acquisition functions, using
ContextDist as a naïve baseline. The true benefit of observations is determined using oracle acqui-
sition functions, αoracle, where the true ERA5 value is revealed at x(s)

i and the average performance gain
on the target set is measured for each metric: joint NLL, marginal NLL, and RMSE (Appendix F.3).
Computing non-oracle and oracle acquisition functions at all S query locations produces vectors,
α(X (s)) and αoracle(X

(s)). The Pearson correlation r = corr(α(X (s)),αoracle(X
(s))) between these

vectors quantifies how strong the relationship is for a given model, acquisition function, and metric.
With the context set initialised at Antarctic station locations (Section 3.2), the ConvGNP’s joint MI
achieves the best correlation with its joint NLL improvement (r = 0.90), as for its marginal MI with
its marginal NLL improvement (r = 0.93) and its change in variance with its RMSE improvement
(r = 0.93) (Figure 6a), substantially outperforming the ContextDist baseline in each case. The
Gibbs GP’s acquisition functions are less robust at predicting performance gain, with the joint MI being
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particularly poor at predicting joint NLL improvement (Figure 6b). The EQ GP’s model-based acquisi-
tion functions all perform similarly to ContextDist for each metric (Figure 6c), which is likely an
artifact of its stationary covariance function.

We repeat the above analysis using the Kendall rank correlation coefficient, κ, which measures
the similarity between the rankings of α and αoracle by computing the fraction of all pairs of search
points (x(s)

i ,x
(s)
j ) that are ordered the same way in the two rankings and normalising this fraction to

lie in (−1, 1) (Equation G.3). The findings are very similar to the Pearson correlation results above:
only the ConvGNP has good alignment between acquisition functions and metrics, with JointMI,
MarginalMI, and DeltaVar obtaining the best κ-values for joint NLL (κ = 0.74), marginal NLL
(κ = 0.82), and RMSE (κ = 0.84), respectively (Figure G1).

These results indicate that the ConvGNP can robustly predict performance gain, unlike the GP
baselines. Appendix G provides more detailed plots from this experiment, including the acquisi-
tion function heatmaps (Figure G2–Figure G4) and scatter plots for all the oracle/non-oracle pairs
underlying Figure 6 (Figure G5–Figure G7).
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Figure 6. The ConvGNP reliably predicts the benefit of new observations. Correlation between model-
based and oracle acquisition functions,α(X (s)) andαoracle(X

(s)). Error bars indicate the 2.5%–97.5%
quantiles from 5000 bootstrapped correlation values, computed by resampling the 1365 pairs of points
with replacement, measuring how spatially consistent the correlation is across the search spaceX (s) .

3.2.2. Sensor placement experiment

We now run a simulated greedy sensor placement experiment. After α(x(s)
i ) is computed for i =

(1, . . . , S), the i∗ corresponding to the maximum value is selected. The corresponding input x(s)
i∗ is

then appended to its context set, X (c)
τ → {X (c)

τ , x
(s)
i∗}. If α depends on the context y-values, we fill the

missing observation with the model mean, y(c)
τ → {y(c)

τ , ȳ
(s)
τ,i∗}, where ȳ(s)

τ,i is the model’s mean at x(s)
i

for time τ . This process is repeated until K = 10 placements have been made. To evaluate placement
quality, we reveal ERA5 values to the models at the proposed sites and compute performance metrics
over test dates 2018–2019 with a 100 km target grid. See Appendix H for full experiment details.

The ConvGNP’s JointMI, MarginalMI, and DeltaVar placements substantially outperform
ContextDist for the metrics they target by the 5th placement onwards (Figure 7a–c; Fig-
ure H1a,d,g), and lead to greater performance improvements by the K = 10th placement than both
of the GP baselines (Figure H2).4 This is despite the ConvGNP starting off with better performance
than both of the GP baselines for each metric. Furthermore, the proposed locations from the Con-
vGNP model-based criteria differ greatly from ContextDist (Figure 5a–d), with the JointMI
placements being notably clustered together (Figure 5a). In contrast, the EQ GP’s model-based crite-
ria propose diffuse placements (Figure F1g–i) which are strikingly similar to those of ContextDist.
With the EQ GP’s naïve stationary covariance, minimising uncertainty simply maximises distance from
current observations, which is not a cost-effective placement strategy. Future work should repeat these
experiments with different initial sensor network configurations to assess the robustness of these results.

4The only exception to this is the Gibbs GP’s DeltaVar, which improves its RMSE by 0.79 °C compared with 0.77 °C for
the ConvGNP. However, the Gibbs GP starts off with an RMSE that is 0.60 °C worse than the ConvGNP (Figure H2).
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Figure 7. Sensor placement results. Performance metrics on the sensor placement test data versus
number of stations revealed to the models. Results are averaged over 243 dates in 2018–2019, with
targets defined on a 100 km grid over Antarctica. For simplicity, we only plot the model-based criterion
that targets the plotted metric. The GP baselines are shown on the marginal negative log-likelihood
(NLL) and RMSE panels. For the joint NLL, the GP baselines perform far worse than the ConvGNP and
are not shown. The confidence interval of Random is the standard error from 5 random placements.

3.2.3. Multi-objective optimisation for finding cost-effective sensor placements

In practice, the scientific goals of sensor placement must be reconciled with cost and safety consider-
ations, which are key concerns in Antarctic fieldwork (Lazzara et al., 2012) and will likely override
the model’s optimal siting recommendationsX∗. In this case, it is crucial that the model can faithfully
predict observation informativeness across the entire search space X (s), not just at the optimal sites
X∗, so that informativeness can be traded-off with cost. Leveraging our findings from Section 3.2.1
that the ConvGNP’s DeltaVar is a robust indicator of RMSE and marginal NLL improvement (Fig-
ure 6a), we demonstrate a toy example of multi-objective optimisation with DeltaVar as a proxy for
informativeness and ContextDist as a proxy for cost. One way of integrating cost in the optimisa-
tion is to constrain the search such that the total cost is within a pre-defined budget (Sviridenko, 2004;
Krause et al., 2006). Alternatively, cost can be traded off with informativeness in the objective, allowing
for unconstrained optimisation. We use Pareto optimisation for this purpose, which identifies a set of
‘Pareto optimal’ sites corresponding to points where the informativeness cannot be improved without
an increase to the cost. These rank-1 points can then be removed, the Pareto optimal set computed again,
and so on until all sites have been assigned a Pareto rank (Figure 8). This procedure trivially generalises
to multiple objectives and could underlie a future operational, human-in-the-loop sensor placement
recommendation system that leverages an accurate cost model to guide expert decision-making.
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Figure 8. Trading off informativeness with cost. Accounting for sensor placement cost using multi-
objective Pareto optimisation, maximising the ConvGNP’s DeltaVar (a proxy for informativeness)
and minimising ContextDist (a proxy for cost). a, Scatter plot showing all pairs of informativeness
and cost values. b, Heatmap of Pareto rank. The rank-1 Pareto set is highlighted in red for both plots.
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4. Discussion

In this study, we trained a ConvGNP regression model to spatially interpolate ERA5 Antarctic 2 m
temperature anomaly. The ConvGNP learned seasonally-varying non-stationary spatial covariance by
leveraging a second data stream (‘context set’ in meta-learning language) containing auxiliary predic-
tor variables, such as the day of year and surface elevation. The more flexible architecture and second
data stream allow the ConvGNP to make substantially better probabilistic predictions on test data than
those of GP baselines, including a GP with a non-stationary covariance function. A simulated sensor
placement experiment was devised with context ERA5 observations initialised at real Antarctic station
locations. New sensor placements were evaluated via the reduction in model prediction uncertainty over
the Antarctic continent, with different measures of uncertainty targeting different performance metrics.
For each of these uncertainty-based acquisition functions, the ConvGNP predicts its true performance
metric gain from new observations substantially more accurately than GP baselines. This leads to infor-
mative new sensor placements that improve the ConvGNP’s performance metrics on test data by a
wider margin than the GP baselines, despite the ConvGNP starting off with more performant predic-
tions and thus having less room for improvement. These findings are notable given that GPs have a
long history of use in geostatistics under the term ‘kriging’ (Cressie, 1993) and are frequently used for
sensor placement. Equipped with a robust measure of placement informativeness from the ConvGNP,
multi-objective Pareto optimisation could be used to account for sensor placement cost, pruning a large
search space of possible locations into a smaller set of cost-effective sites which can be considered by
human experts. Our approach can readily be applied to other geographies and climate variables by fit-
ting a ConvGNP to existing reanalysis data and running a greedy sensor placement algorithm, such as
the ones outlined in this work. However, there are some limitations to this approach, which we highlight
below alongside recommendations for future work.

4.1. Limitations

Not accounting for real-world observations. The main limitation of the current approach is that by
training the ConvGNP to spatially interpolate noise-free reanalysis output instead of real-world obser-
vations, the model measures the informativeness of reanalysis data and not of real-world observations.
Two consequences arise from this shortcoming. First, the model does not account for real-world sensor
noise. A simple way to alleviate this issue would be to simulate sensor noise by training the ConvGNP
with varying levels of i.i.d. Gaussian noise added to the ERA5 context points, which could be explored
in future work. The second consequence is that bias and coarse spatial resolution in the reanalysis data
are reflected in the ConvGNP’s predictions. One way to deal with this would be to train with obser-
vational data. However, real in-situ environmental sensor observations can be sparse in space or time,
which brings a risk of spatial overfitting when used as training data for highly flexible models like the
ConvGNP. An interesting potential solution is to pre-train the ConvGNP on simulated data and fine-
tune it on observational data. Provided sufficient observational data for training, the fine-tuning phase
would correct some of the simulator biases and lead to a better representation of the target variable.

The ConvGNP must learn how to condition on observations. The ConvGNP is directly trained to output a
GP predictive, which is different from specifying a GP prior and then conditioning that prior on context
observations using Bayes’ rule. The ConvGNP’s neural networks can learn non-Bayesian conditioning
mechanics from the data, which brings greater flexibility at the cost of increased training requirements.
Nevertheless, provided sufficient training data and an appropriate training scheme, the ConvGNP’s
conditioning flexibility is better-suited to complex environmental data than similar approaches like deep
kernel learning (Wilson et al. 2015), where neural networks learn non-stationary prior GP covariance
functions from data and then use standard Bayes’ rule conditioning to compute posterior predictives
(Appendix I). However, if insufficient data is available to train a flexible model like the ConvGNP, a
more appropriate choice would be a less data-hungry model with stronger inductive biases and better-
quantified epistemic uncertainty, such as a latent GP (Patel et al., 2022).



12 Tom R. Andersson et al.

4.2. Future work

Possible extensions Going forwards, there are several possible extensions to this work with simple
modifications to our approach. For example, the ConvGNP can be used to rank the value of current
stations (Tardif et al., 2022), which could identify redundant stations that can be moved to more valu-
able locations. Alternatively, the model could be set up in forecasting mode, with the target data being
some number of discrete time steps ahead of the context data. The same greedy sensor placement algo-
rithms can then be used to find station sites that minimise forecast uncertainty, which is important for
supporting safety-critical operations in remote regions like Antarctica that depend on reliable weather
forecasts (Lazzara et al., 2012; Hakim et al., 2020). Another exciting avenue is to build a ConvGNP
that can propose optimal trajectories for a fleet of moving robots (e.g. autonomous underwater vehicles)
(Singh et al., 2007; Marchant and Ramos, 2012). One way to do this is to have two context sets of the
target variable: one for the current time step (τ = 0) and another for the next time step (τ = +1). This
model can propose perturbations to the robot locations from τ = 0 to τ = +1 (within speed limits)
that minimise prediction uncertainty at τ = +1. Trajectories can then be formed by running this model
autoregressively. To extend our approach to non-Gaussian variables, our analysis could be repeated with
models that output non-Gaussian distributions, such as convolutional latent neural processes (Foong
et al., 2020), normalising flows (Durkan et al., 2019), or autoregressive ConvCNPs (Bruinsma et al.,
2023). In general, future work should explore training and architecture schemes that enable learning
from multiple heterogeneous data sources, such as simulated data, satellite observations, and in situ sta-
tions. Foundation modelling approaches have recently shown substantial promise in this area (Nguyen
et al., 2023) and could be explored with ConvNPs.

Comparison and integration with physics-based sensor placement methods As with any model-based sen-
sor placement approach, the ConvGNP’s measure of informativeness depends on the model itself. In
general, an observation with high impact on the uncertainty of one model may have little impact on the
uncertainty of another model. This raises interesting questions about which model should be trusted,
particularly for models based on very different principles such as data-driven and numerical models.
It would be insightful to examine the level of agreement or disagreement between the informativeness
estimates of ML and physics-based models. Agreement would suggest that the informativeness pre-
dicted by the causal dynamics of the numerical model is also statistically evident in the training data of
the ML model. However, a blocker to such intercomparison studies is the minimal overlap between the
physics-based and ML sensor placement literatures. Future work should trace explicit links between
these distinct research worlds to translate differing terminologies and facilitate the cross-pollination of
ideas. For example, we identified potential ML analogues for several physics-based observing system
design approaches: ablation-based variable importance methods (Fisher et al., 2019) for observing sys-
tem experiments (OSEs; Boullot et al., 2016); gradient-based saliency methods (Bach et al., 2015) for
adjoint modelling (Langland and Baker, 2004); and uncertainty-based active learning (Krause et al.,
2008) for ESA (Torn and Hakim, 2008). Here we remark only on the latter, where we note a striking
similarity. In ESA, sensor placement informativeness is measured by assimilating query observations
into a numerical model and computing the reduction in ensemble member variance for a target quantity.
This approach has been used for Antarctic temperature sensor placement in previous studies (Hakim
et al., 2020; Tardif et al., 2022) with a goal of minimising the total marginal variance of Antarctic sur-
face temperature in ensemble member samples from a numerical model, which can be seen as a Monte
Carlo estimate of the DeltaVar acquisition function used in this study. This similarity makes ESA
a ripe starting point for comparing the sensor informativeness estimates of numerical and ML models
in future work. Other than simply comparing ML-based and physics-based sensor placement methods,
future work could also integrate the two. For example, although the ConvGNP lacks the causal ground-
ing of dynamical models, it can run orders of magnitude faster. Thus, the ConvGNP could nominate a
few observation locations from a large search space to be analysed by more expensive physics-based
techniques such as adjoint sensitivity (Loose et al., 2020; Loose and Heimbach, 2021).
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5. Conclusion

In current numerical weather prediction and reanalysis systems, observations improve models but not
vice versa (Gettelman et al., 2022). Recent calls for environmental ‘digital twins’ have highlighted the
potential to improve model predictions by using the model to actively drive data capture, thus cou-
pling the physical world with the digital twin (Blair, 2021; Gettelman et al., 2022). This coupling
could be achieved through active learning with scalable and flexible ML models. The ConvGNP is one
such model, with a range of capabilities that aid modelling complex spatiotemporal climate variables.
These include an ability to ingest multiple predictors of various modalities (gridded and off-grid) and
learn arbitrary mean and covariance functions from raw data. This study found that the ConvGNP can
robustly evaluate the informativeness of new observation sites, unlike GP baselines, using simulated
Antarctic air temperature anomaly as a proof-of-concept. By providing a faithful notion of observa-
tion informativeness, the ConvGNP could underlie an operational, human-in-the-loop sensor placement
recommendation tool which can find cost-effective locations for new measurements that substantially
reduce model uncertainty and increase model accuracy. We see our approach as complementary to
existing physics-based methods, with interesting avenues for comparison and integration in future.
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Richard E. Turner

A. Data considerations

In this section we provide details on the data sources, preprocessing, and normalisation.

A.1. Data sources

The daily-averaged temperature reanalysis data was obtained from ERA5 (Hersbach et al., 2020).
The land mask and elevation field was obtained from the BedMachine dataset (Morlighem, 2020).
Antarctic temperature locations from staffed and automatic weather stations were downloaded from
ftp.bas.ac.uk/src/.

A.2. Data preprocessing

The temperature anomaly data and land/elevation auxiliary data were regridded from lat/lon to a South-
ern Hemisphere Equal Area Scalable Earth 2 (EASE2) grid at 25 km resolution and cropping to a size
of 280 × 280. This centres the data on the South Pole.

Temperature anomalies were computed from the absolute temperature values by first computing the
daily-average climatology across 1950-2013 (i.e. averaging the absolute temperature over time for each
day of year, returning a 366× 280× 280 tensor). Then, for each day of year, the climatological average
was subtracted from the absolute temperature values, returning anomaly values.

A.3. Data normalisation

To aid the training process, we normalised the data before passing it to the ConvGNP and GP models.
The temperature data was normalised from Celsius to a mean of 0 and standard deviation of 1. The
elevation field was normalised from metres to values in [0, 1]. The land mask already took appropriate
normalised values in {0, 1}. The input coordinates were normalised from metres to take values in
[−1, 1].

B. The ConvGNP model

Here we provide details on the ConvGNP training procedure and architecture. A high-level schematic
of the ConvGNP forward-pass is shown in Figure 1. We refer the reader to Markou et al. 2022 for
further model details.

B.1. Generation of Dτ for the training, validation, and test datasets

Each daily-average training dataset Dτ was generated by first drawing the integer number of sim-
ulated temperature anomaly context points Nc ∼ Unif{5, 6, . . . 500} and target points Nt ∼
Unif{3000, 3001, . . . 4000}. Allowing for randomness inNc encourages the model to learn to deal with
both data-sparse and data-rich scenarios. Using a fairly large number of target points ensures there is
sufficient signal for learning the covariance structure of the data while not incurring the computational
cost of a very large Nt. Next, given the randomly sampled Nc and Nt, the 280 × 280 ERA5 grid cells
were sampled uniformly at random to generate the ERA5 context and target locations,X (c)

τ andX (t)
τ .

For the training dates, the random seed used for generating Dτ is changed every epoch, allowing for
an infinitely growing training dataset. In contrast, for the validation and test dates, fixed random seeds
are used so that the Dτ are deterministically random. This ensures the validation and test metrics are
deterministic during and after training.
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For the test results given in Table E1, we loop overNc ∈ {0, 25, 50, . . . 500} and fixNt to a value of
2,000. For each setting of Nc, we generate test tasks Dτ by looping twice over each day in 2018-2019,
resulting in 1,458 test tasks per Nc.

B.2. Antarctic surface temperature anomaly ConvGNP training procedure

The model was trained on data from 1950-2013. An Adam optimiser was used with a learning rate of
8 × 10−5 and an NLL loss function. Gradients with respect to the loss were averaged over batches of
two datasets. Validation tasks from 2014-2017 were used for checkpointing the model weights based
on the mean NLL over the validation tasks. In total, the ConvGNP was trained for 170 epochs. Training
took 11.5 days on a Tesla V100 GPU with a simple implementation of the training pipeline. This could
be improved with better computational practices, such as using TensorFlow’s graph mode rather than
eager mode, which was not supported by the ConvGNP implementation at the time of the experiments.

B.3. ConvGNP architecture

For the ConvGNP model we use the same architecture as described in Markou et al. 2022, except for
a few modifications. The U-Net component of the encoder uses 5x5 convolutional kernels with the
following sequence of channel numbers (d.s. = 2x2 downsample layer, u.s. = 2x2 upsample layer):

128
d.s.−−→ 128

d.s.−−→ 128
d.s.−−→ 128

u.s.−−→ 128
u.s.−−→ 128

u.s.−−→ 128.

We use 128 basis functions for the covariance-parameterising neural network, g. Using 128 channels for
each layer in the U-Net means there are no dimensionality bottlenecks that could reduce the actual rank
of the output lowrank covariance matrix. We use bilinear resize operators for the upsampling layers to
fix checkerboard artifacts that we encountered when using standard zero-padding upsampling (Odena
et al., 2016). For the internal discretisation density of the model, we used 150 points-per-unit (i.e., a
1×1 square of input space contains 150×150 internal discretisation points). We chose 150 points-per-
unit to be close to the density of the ERA5 data in normalised coordinates, which is 140×140 in a 1×1
square of input space.5

The hyperparameter settings above construct a ConvGNP with 4.16 million learnable parameters. In
addition, the choices for the U-Net filter size and internal discretisation density results in a receptive
field of over 1500 km. In other words, context observations can influence target predictions in the
Gaussian predictive distribution up to roughly 750 km in either direction of the x1- or x2-dimensions.

B.4. ConvGNP input data

The ConvGNP receives two context sets as input. The first contains observations of the simulated
ERA5 daily-average temperature anomaly. The second contains a set of 6 gridded auxiliary and meta-
data variables. These are: elevation, land mask, cos(day of year), sin(day of year), x1, and x2. The
cos(day of year) and sin(day of year) inputs, where the day of year is normalised between 0 and 2π,
together define a circular variable that rotates once per year. This informs the model at what time of
year Dτ corresponds to, helping with learning seasonal variations in the data. The x1 and x2 gridded
fields inform the model where in input space the data corresponds to. The gridded auxiliary fields that
vary over input space are crucial for allowing the ConvGNP to model spatial non-stationarity. This
is because they break the U-Net’s translation equivariance property. Future work could explore using
learnable input auxiliary channels, as in Addison et al. 2022, which could lead to richer non-stationarity
at the cost of a greater spatial overfitting risk.

B.5. The SetConv encoder enables fusing data sources with multiple modalities and missing values

The SetConv encoder (Gordon et al., 2020), which fuses the context sets into a single gridded tensor,
enables the ConvGNP to model 1) missing data, 2) multiple data streams, and 3) both gridded and off-
grid data modalities. This is achieved, in part, through the use of a ‘density channel’ for each context

5Note, finer resolution context data would motivate the use of higher internal discretisation densities.
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Figure B1. Example output of the ConvGNP’s SetConv encoder. The SetConv was passed a context set
with ERA5 temperature anomaly at Antarctic station locations.

set (Gordon et al., 2020). The density channel measures the density of context points by placing a small
Gaussian basis function of unit amplitude at each observation location, such that the density channel
takes values close to zero away from observations. Output y-values of context points are encoded in a
similar fashion, but the amplitude of the Gaussian basis function is weighted by the value of y. These
intermediate functional representations are then discretised onto the model’s internal grid to yield the
density channels and (N -dimensional) ‘data channels’ in the gridded encoding. This set-up allows the
model to distinguish between the case where an observation is made with a y-value of 0 (data channel
is zero but density channel is non-zero), and the case where there is no observation available (both the
data and density channels are zero).

Figure B1 shows the channels of a gridded encoding, which are splayed out to highlight the two
input context sets provided to the ConvGNP in this study. The density channel for the first context set
pinpoints the scattered, point-based temperature anomaly observation locations. The second density
channel pertains to the gridded auxiliary context set and thus takes a constant value within the region of
data. While in this setting the second gridded context set contained auxiliary variables with no missing
data, the SetConv can represent missing data with gridded variables as well as non-gridded variables.
For example, missing satellite observations due to cloud cover would be captured by patterns of zeros
in the density channel. The density channel can thus be seen as a kind of missing data channel, where
missing data (e.g. due to sensor malfunction, clouds, or the absence of sensing equipment) is captured
with density values close to zero. Therefore, the SetConv encoder equips geospatial deep learning
models with an ability to handle missing data, which is an important problem in many application
areas (Mitra et al., 2023). However, the degree to which the model can learn to respond to missing data
appropriately depends on a training scheme with sufficient examples of missing data, as discussed in
Section 4.
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C. Gaussian Process benchmarks

Here we provide details on the GP baseline kernels and hyperparameter fitting procedure. All GPs were
implemented using the Python package stheno (https://github.com/wesselb/stheno) and optimised
using the Python package varz (https://github.com/wesselb/varz).

C.1. Gibbs GP

The Gibbs kernel (Gibbs, 1997) is a non-stationary generalisation of the EQ kernel. In the x ∈ R2 case,
the covariance function is given by:

kGibbs(x,x
′) = σ2

2∏
i=1

(
2li(x)li(x

′)

li(x)2 + li(x′)2

)1/2

exp

(
−

2∑
i=1

(xi − x′i)2

li(x)2 + li(x′)2

)
, (C.1)

where σ2 is the variance, and length scale functions l1(x) and l2(x) dictate the length scales in the x1-
and x2-directions. We parameterise the length scale functions li(x) as a weighted sum of M regularly
placed Gaussian basis functions,

li(x) =

M∑
m=1

θi,m exp

(
− (x− x(µ)

m )T (x− x(µ)
m )

2λ2

)
, (C.2)

where the θi,m are the constrained-positive weights of basis function m for input dimension i, and the
basis functions are placed with the x(µ)

m on a 100×100 grid spanning the input space. The basis function
length scale λ is kept fixed and equal to the spacing between basis functions. We note that the basis
function spacing controls how quickly the length scale functions can vary, and is a fixed (untrainable)
hyperparameter. Too many basis functions can lead to overfitting, while too few can lead to underfitting.
We tried different settings and chose a 100×100 grid as the most performant.

We train the parameters {θ1,θ2, σ}, along with the other hyperparameters, using gradient descent on
the negative log marginal likelihood (NLML) using an Adam optimiser with learning rate of 5× 10−3

and a batch size of 10. We used 1950-2013 as a training period, subsampling the dates by a factor of 3,
and sampling 500 random context locations for each of the training tasks Appendix B.1. Training was
halted after the NLL on validation data spanning 2014–2017 did not improve for 5 epochs.

Figure C1 shows the trained length scale functions l1(x) and l2(x), revealing interesting detail such
as very low correlation length scales perpendicular to the coastline.
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Figure C1. Learned Gibbs GP length scale functions, l1(x) and l2(x).
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C.2. Exponentiated quadratic and rational quadratic GPs

We also include more simplistic GP baselines using non-isotropic exponentiated quadratic (EQ) and
rational quadratic (RQ) kernels, which are both stationary prior covariance functions (unlike the Gibbs
kernel). The non-isotropic EQ kernel is:

kEQ(x,x′) = σ2 exp

(
− (x1 − x′1)2

2`21
− (x2 − x′2)2

2`22

)
, (C.3)

where σ2 is the variance, and `1 and `2 are the length scales in each input dimension. The non-isotropic
RQ kernel is:

kRQ(x,x′) = σ2

(
1 +

(x1 − x′1)2

2α`21
+

(x2 − x′2)2

2α`22

)−α
, (C.4)

where α is the shape parameter, controlling the smoothness of the kernel. The RQ kernel can be seen
as an infinite sum of EQ kernels with different length scales (Rasmussen, 2004).

We fit the EQ and RQ GP hyperparameters using the L-BFGS-B algorithm on a batch of 730 dates
sampled randomly from 1950-2013. The EQ and RQ GPs are thus exposed to fewer training tasks.
However, these models only have a few parameters each. We found that increasing the training set size
did not yield improved performance.
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D. Non-stationarity in the ConvGNP

The ConvGNP learns richer spatial covariance structure than the GP baselines (Figure D1). Further,
while our implementation of the ConvGNP only models correlations over 2D space (i.e. modelling
time independently), the model can leverage the day of year auxiliary inputs to learn seasonal non-
stationarity in the data (Figure D2). We note that the main changes in the ConvGNP’s covariance
from summer to winter are caused by changes in the magnitudes of the marginal variances (temper-
ature anomalies take more extreme values in winter). However, the spatial correlations also change
(Figure D3). For example, the Ross Ice Shelf site becomes less correlated with the Southern Ocean
(Figure D3a), the South Pole becomes more correlated with the surrounding region (Figure D3b), and
the East Antarctica site becomes more correlated with the Southern Ocean (Figure D3c).
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Figure D1. The ConvGNP learns spatially-varying covariance structure. Heatmaps showing the prior
covariance function, k(x1,x2), with x1 fixed at the white plus location and x2 varying over the grid.
Plots are shown for three different x1-locations (the Ross Ice Shelf, the South Pole, and East Antarctica)
and the three models (ConvGNP, Gibbs GP, and EQ GP). The ConvGNP’s day of year input was the
1st of June.
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Figure D2. The ConvGNP learns seasonally-varying covariance. Heatmaps showing the ConvGNP’s
prior covariance function k(x1,x2), as in Figure 3a-c, but for two times of the year: midsummer (Jan
22nd) and midwinter (June 21st). This shows that the ConvGNP has learned a prior covariance function
with non-stationarity over day of year.
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Figure D3. The ConvGNP learns seasonal changes in spatial correlations. Change in prior cor-
relation from the ConvGNP from the Austral Midsummer (Jan 22nd) to Midwinter (Jun 21st). The
correlation ρ was computed from the covariance using ρ = k(x1,x2)/

√
k(x1,x1)k(x2,x2), with x1

fixed at the black plus location and x2 varying over the grid. Plot shows summer minus winter.

E. Additional test set results

In this section we provide further details on the models’ test set performance.

E.1. Overall performance metrics

Table E1 shows the test set results averaged overNc ∈ {0, 25, 50, . . . 500}. The ConvGNP outperforms
the three GP baselines with statistical significance across all three metrics (the normalised joint NLL,
the marginal NLL, and the RMSE).
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Table E1. Performance on test tasks from the period 2018–2019, usingNc ∈ {0, 25, 50, . . . 500}. Errors
indicate standard errors. For each metric, lower is better. Significantly best results in bold.

METRIC CONVGNP GIBBS GP RQ GP EQ GP

NORMALISED JOINT NLL −0.61±0.00 −0.42±0.00 −0.23±0.00 0.00±0.00
MARGINAL NLL −0.19±0.01 0.30±0.01 0.47±0.01 0.54±0.01

RMSE (◦C) 1.54±0.01 1.84±0.01 1.63±0.01 1.72±0.01

E.2. Marginal calibration and sharpness

The calibration and sharpness of probabilistic prediction systems are key performance indicators
(Gneiting et al., 2007). To assess these two quantities, we generated test tasks by subsampling the test
dates (2018–2019) by a factor of 30 to obtain 25 dates. We then followed the same procedure to gener-
ate test tasks as in Appendix B.1–looping over Nc ∈ {0, 25, 50, . . . 500} with Nt = 2000, resulting in
50,000 marginal predictions per Nc for each model.

The calibration of a model’s marginal distributions can be assessed using the probability integral
transform (PIT). The PIT is defined as the cumulative distribution function (CDF) of the model’s
marginal distribution evaluated at the true observed value of a particular target point. If a model has per-
fect calibration, the histogram of PIT values is uniform (Gneiting et al., 2007). When aggregating across
all test tasks (with varyingNc values), the ConvGNP’s marginal distributions are much better calibrated
than the GP baselines, coming closer to the ideal uniform distribution of PIT values (Figure E1).

The sharpness (i.e. degree of certainty) of probabilistic predictions must also be considered alongside
calibration; a key goal for probabilistic prediction systems is to maximise sharpness subject to good
calibration (Gneiting et al., 2007). We assess marginal distribution sharpness by plotting the standard
deviation of the univariate Gaussian marginals against Nc. The ConvGNP makes substantially more
confident predictions than the GP baselines across all values of Nc Figure E2. The GP baselines tend to
make uninformative predictions with large uncertainty, explaining why their PIT values cluster around
0.5 (Figure E1b–c).
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Figure E1. The ConvGNP produces the most well-calibrated marginal predictions. Probability inte-
gral transform (PIT) histograms evaluated on 25 dates from the test years (2018–2019). The PIT is
defined as the cumulative distribution function (CDF) of the model’s marginal distribution evaluated at
the true y-values. A black dashed line shows the ideal uniform distribution (corresponding to perfect
calibration).
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Figure E2. The ConvGNP produces the sharpest marginal predictions. Mean standard deviation of
the models’ marginal Gaussian distributions versus number of context points, Nc. 50,000 standard
deviation values were used per Nc, derived from 25 dates in the test years (2018–2019). Error bars are
standard errors.

F. Sensor placement acquisition functions

Here we expand upon and mathematically define each acquisition function used for sensor placement.

F.1. Model-based uncertainty reduction acquisition functions

JointMI: Expected reduction in joint entropy over targets after appending the query sensor to the
context set C.

α(x(s)
i , τ) = H(y(t)

τ |Cτ )− E
π(y(s)

τ,i)

[
H(y(t)

τ |Cτ ,x
(s)
i , y

(s)
τ,i)

]
(F.1)

= H(y(t)
τ |Cτ )−

∫
π(y(s)

τ,i;Cτ )H(y(t)
τ |Cτ ,x

(s)
i , y

(s)
τ,i) dy(s)

τ,i (F.2)

(a)
≈ H(y(t)

τ |Cτ )−H(y(t)
τ |Cτ ,x

(s)
i , ȳ

(s)
τ,i) (F.3)

(b)
≈ cτ −H(y(t)

τ |Cτ ,x
(s)
i , ȳ

(s)
τ,i), (F.4)

≈ cτ −
1

2
log((2πe)2|K|), (F.5)

≈ cτ −
1

2
log |K|, (F.6)

where cτ is a constant andK is the model’s covariance matrix at the target locations after conditioning
on the imputed query sensor observation, (x(s)

i , ȳ
(s)
τ,i). In (a) we approximate the intractable expectation

integral over the entropy term H(y(t)
τ |Cτ ,x

(s)
i , y

(s)
τ,i) with a simple substitution of the model’s mean

prediction ȳ(s)
τ,i at query location x(s)

i . In (b) we use the fact that H(y(t)
τ |Cτ ) depends only on τ and not

x(s)
i . Thus, this placement criterion is equivalent to minimising the entropy over y(t)

τ |Cτ ,x
(s)
i , ȳ

(s)
τ,i by

minimising the determinant of the covariance matrixK.
This placement criterion may be hindered by approximating the expectation over the query obser-

vation y(s)
τ,i by imputing with the model’s mean prediction ȳ(s)

τ,i in Equation F.3. Instead, a better scheme
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would draw samples from the model’s marginal distribution over y(s)
τ,i to estimate the expectation using

Monte Carlo sampling, which may better predict the actual reduction in entropy upon conditioning on
the true observation. However, Monte Carlo sampling linearly increases the cost of evaluating the acqui-
sition function. Future work should quantify the performance boost from switching to this sampling
procedure.
MarginalMI: Expected reduction in marginal entropy over targets upon conditioning on the query
sensor. Equivalent to that of Equation F.6, but setting the off-diagonal covariances in the model’s out-
put Gaussian distribution to zero when evaluating the entropy term H(y(t)

τ |Cτ ,x
(s)
i , y

(s)
τ,i). Using the

resulting independence of the individual marginal distributions after step (b) in Equation A.5 leads to:

α(x(s)
i , τ) ≈ cτ −

Nt∑
j=1

H(y(t)
j,τ |Cτ ,x

(s)
i , ȳ

(s)
τ,i), (F.7)

≈ cτ −
Nt∑
j=1

1

2
log(2πeσ2

τ,j), (F.8)

≈ cτ −
Nt∑
j=1

log(σ2
τ,j), (F.9)

where σ2
τ,j is the variance of the model’s marginal Gaussian distribution of target point j at time τ

after conditioning on the imputed query sensor observation, (x(s)
i , ȳ

(s)
τ,i). In other words, the acquisition

function is the negative sum of the marginal Gaussian entropies at each target location after adding the
query sensor to the context set. After this acquisition function is averaged over time steps in Equation 2,
the placement criterion amounts to minimising the mean log-variance over time and target locations.
DeltaVar: Expected reduction in mean marginal variance over targets upon conditioning on the query
sensor. Following the same expectation approximation as JointMI and MarginalMI we arrive at:

α(x(s)
i , τ) ≈ cτ −

1

Nt

Nt∑
j=1

σ2
τ,j . (F.10)

The main difference with the MarginalMI acquisition function is that DeltaVar minimises the
absolute marginal variances rather than the log marginal variances.

F.1.1. Model-based uncertainty reduction acquisition functions from the sensor placement experiment

Figure F1 plots heatmaps of the three model-based acquisition functions (JointMI, MarginalMI,
and DeltaVar) at the first greedy iteration for the ConvGNP, Gibbs GP, and EQ GP. Also shown are
the K = 10 proposed sensor placements with the criterion of maximising these acquisition functions.
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Figure F1. Acquisition functions and sensor placements for all three models. Maps of acquisition
function values α(x(s)

i ) for the initial k = 1 greedy iteration. The initial context setX(c) is derived from
real Antarctic station locations (indicated by black crosses). Running the sensor placement algorithm
for K = 10 sensor placements results in the proposed sensor placementsX∗ (indicated by pluses).

F.2. Baseline acquisition functions

ContextDist: Euclidean distance from the closest context point,

α(x(s)
i , τ) = min{||x(s)

i − x
(c)
τ,1||2, ..., ||x

(s)
i − x

(c)
τ,Nc
||2}, (F.11)

Random: Uniform at random in [0, 1],

α(x(s)
i , τ) = uτ,i where uτ,i ∼ Unif(0, 1). (F.12)

Maximising this random acquisition function results in placements that are sampled uniformly from the
search pointsX (s).

F.3. Oracle acquisition functions

Let a performance metric γ take in the probability distribution over targets output by prediction map π
and the true target values y(t)

τ . Considering only the 1D context set corresponding to observations of the
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target variable for notational simplicity, the oracle acquisition functions are:

αoracle(x
(s)
i , τ) = γ(π(y(t)

τ ;X (c)
τ ,y

(c)
τ ,X

(t)
τ ),y(t)

τ )− γ(π(y(t)
τ ; {X (c)

τ ,x
(s)
i }, {y

(c)
τ , y

(s)
τ,i},X

(t)
τ ),y(t)

τ ),

(F.13)

= cτ − γ(π(y(t)
τ ; {X (c)

τ ,x
(s)
i }, {y

(c)
τ , y

(s)
τ,i},X

(t)
τ ),y(t)

τ ), (F.14)

which is the decrease in performance metric (assuming lower is better) induced by concatenating the
true observation (x(s)

i , y
(s)
τ,i) to the context set. αoracle(x

(s)
i , τ) is then averaged over τ as in Equation (2)

to obtain αoracle(x
(s)
i ).

F.4. Comment on the dependence on context observations in the acquisition functions

The posterior covariance function of a vanilla GP depends only on the input locations X (c) of the con-
text set, not the observed values y(c). Consequently, the JointMI, MarginalMI, and DeltaVar
placement methods will depend only on the input locations. This behaviour is noted by MacKay
1992 for a Bayesian linear regression model with a Gaussian prior, which is a special case of a GP
(Rasmussen, 2004). This could be seen as an inflexible limitation of GPs; they cannot augment their
posterior correlation structure based on the y-values observed at the x-locations. For example, if an
extreme y-value is observed in the context set, a GP posterior cannot become more uncertain, which
may be a desirable characteristic. By construction, the ConvGNP is a non-linear map from context sets
to GPs, which means that the whole GP, including the covariance, can depend on every aspect of the
context set, including the y-values. The ConvGNP’s y-dependence necessitates the expectation integral
over the unobserved query y-value in Equation F.1, as well as the averaging over multiple time steps
for the uncertainty-based acquisition functions in Equation 2. Neither of these steps are necessary for
the GP baselines since their covariance is independent of the y-values.
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G. Oracle sensor placement results

Here we provide more detailed plots from the oracle acquisition function experiment described
in Section 3.2.1. Heatmaps of the temporally-averaged α(x(s)

i ) acquisition functions for the non-
oracle and oracle acquisition functions for the ConvGNP, Gibbs GP, and EQ GP are shown in
Figure G2, Figure G3, and Figure G4, respectively. Figure G5, Figure G6, and Figure G7 show scatter
plots of non-oracle acquisition functions against OracleJointNLL, OracleMarginalNLL, and
OracleRMSE, respectively.

We repeat the Pearson correlation analysis of Figure 6 but using a correlation coefficient specifically
suited to rankings, the Kendall rank correlation coefficient:

κ =
1

Npairs

∑
i<j

sgn(αi − αj)sgn(αoracle,i − αoracle,j), (G.1)

where Npairs = S(S − 1)/2 is the total number of pairs, αi = α(x
(s)
i ), and sgn is the sign function

which is +1 if the argument is positive and −1 if the argument is negative.. This loops over all pairs of
(αi, αoracle,i) and (αj , αoracle,j), checking whether the α values are ranked in the same order as the αoracle
values. If so, the pair is ‘concordant’ and contributes a +1 to the sum in Equation (G.1). Otherwise, it is
‘discordant’ and contributes a−1. Defining the total number of concordant pairs as Ncon, Equation G.1
can be rewritten as:

κ =
1

Npairs

(
Ncon − (Npairs −Ncon)

)
, (G.2)

= 2× Ncon

Npairs
− 1, (G.3)

which we see as the fraction of pairs that are concordant, Ncon/Npairs, normalised to lie in (−1, 1).
Identical rankings yield κ = 1, exactly opposite rankings yield κ = −1, and if the two

rankings are independent the expected value of κ is zero. We computed κ in Python using the
scipy.stats.kendalltau function. The results are shown in Figure G1.
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Figure G1. The ConvGNP can reliably rank the value of new observations. Kendall rank correlation
coefficient κ between model-based and oracle acquisition functions. Error bars indicate the 95% per-
centile interval over 5000 bootstrapped correlation values by resampling the 1365 pairs of points with
replacement, measuring how spatially consistent κ is across space.
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H. Sensor placement toy experiment details

Here we provide more details on the sensor placement toy experiment.

H.1. Experiment design choices

To emulate a non-uniform, real-world sensor network to be optimised, we initialiseX (c)
τ at the locations

of real Antarctic temperature station observations at τ = 2009/02/15, and interpolate the gridded
ERA5 temperature anomaly atX (c)

τ to compute y(c)
τ .

The JointMI, MarginalMI, and DeltaVar criteria for the GP models and the ContextDist
criterion only depend on the context set locations, X (c)

τ , not the observed values y(t)
τ (Appendix F.4).

Since we have a non-varyingX (c)
τ in this toy experiment, the model-based acquisition functions do not

depend on time τ for the GPs, and so the sensor placements for these criteria can be run using a single
task. In contrast, each oracle acquisition function and the ConvGNP’s model-based criteria do depend
on the observed values y(t)

τ . For these acquisition functions we compute the average α(x(s)
i ) values in

Equation 2 using dates in 2014–2017, subsampled by a factor of 14, to yield J = 105 sensor placement
search tasks. A regular spatial grid is used for the search space X (s), with one query location every
100 km. The x(s)

i were masked out over the ocean to focus on land stations. The target locations X (t)
τ

were defined on the same grid with points over ocean masked out to focus on predicting land surface
temperature. These choices result in a search size and target set size of S = Nt = 1, 365. Note, limiting
the target set size to Nt = 1, 365 was due to the cubic computational cost of the GP baselines–the
ConvGNP could use a much denser target grid due to its linear scaling with number of target points.
For the ConvGNP, sequentially computing one of the acquisition functions over these J = 105 dates
and S = 1, 365 search points (totalling 143, 325 forward passes) took roughly 3 hours on a 32 GB
NVIDIA V100 GPU using TensorFlow’s eager mode.

The proposed placements X∗ were assessed by analysing model performance over 243 uniformly
spaced dates in 2018–2019 (sampling every 3rd day). The sensor placement search period aligns with
the model validation period, while the sensor placement analysis period aligns with the model test
period.

H.2. Full sensor placement results

Figure F1 plots the K = 10 proposed sensor placements for each model and placement criterion.
The full breakdown of the sensor placement results for each model, metric, and criterion is shown in
Figure H1, using independent y-axes to highlight differences in placement criterion performance for
a given model. However, this visually obscures two other differences: initial model performance and
the scale of improvement with added stations. Plotting the results with the y-axes shared across models
highlights these differences (Figure H2).
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Figure H1. Sensor placement results. Performance metrics on the 2018-2019 sensor placement ERA5
test data versus the number of stations revealed to the models. Results are averaged over tasks with
targets defined on a regular grid over Antarctica. For the Random placement criterion, the confidence
interval shows the standard error based on 5 random placements. a-c, joint normalised negative log-
likelihood (NLL). d-f, mean marginal NLL. g-i, root mean squared error (RMSE).



Environmental Data Science 21

0.10

0.20

0.30

0.40

0.50

Jo
in

t n
or

m
al

ise
d 

NL
L

a

ConvGNP

0.10

0.20

0.30

0.40

0.50

b

Gibbs GP

0.10

0.20

0.30

0.40

0.50

c

EQ GP

2.00

2.20

2.40

M
ar

gi
na

l N
LL

d

2.00

2.20

2.40

e

2.00

2.20

2.40

f

0 2 4 6 8 10
Number of

added stations

2.00

2.25

2.50

2.75

3.00

3.25

RM
SE

 (
C)

g

0 2 4 6 8 10
Number of

added stations

2.00

2.25

2.50

2.75

3.00

3.25

h

0 2 4 6 8 10
Number of

added stations

2.00

2.25

2.50

2.75

3.00

3.25

i

Criterion
JointMI
MarginalMI
DeltaVar
ContextDist
Random

Figure H2. Sensor placement results with shared y-axes. Performance metrics on the 2018-2019 sen-
sor placement ERA5 test data versus the number of stations revealed to the models. Placements are
revealed in the order of placement for each criterion. Results are averaged over tasks. For the Random
placement criterion, the confidence interval shows the standard error based on 5 random placements.
a-c, joint normalised negative log-likelihood (NLL). d-f, mean marginal NLL. g-i, root mean squared
error (RMSE).
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I. Comparison of the ConvGNP with deep kernel learning

The ConvGNP is perhaps most comparable to deep kernel learning (DKL; Wilson et al. 2015). In DKL,
neural networks parameterise a non-stationary covariance function and are trained to optimise a GP
prior over the context data. Then, as with vanilla GPs, standard Bayes’ rule conditioning is used with
that prior to output posterior GP predictives. In contrast, the ConvGNP learns to directly output the GP
predictive during training. This allows for outputting GPs that are not in the class of conditioned GP
priors, which is much more flexible and aids modelling complex environmental data. However, since
robust conditioning is not built in to the ConvGNP, it must learn appropriate conditioning mechanics
from the data. This necessitates a novel training scheme where the model is provided with a range of
context scenarios, expanding the training design space and likely making the ConvGNP more data-
hungry than DKL.

The ConvGNP scales linearly with the number of context points due to the SetConv encoder and
neural network architecture used to output the GP predictive. Predictions with the ConvGNP’s GP
predictive are made scalable by directly learning to output a low-rank approximation of the covariance,
reducing the computational cost from cubic to linear. In contrast, DKL methods are by default cubic
in the number of context and target points and must use approximate inference on the exact GP to
make predictions scalable (Wilson et al., 2015), resulting in an unknown penalty to prediction quality
(Wang et al., 2019). It is not obvious which is the best approach, although the out-of-the-box nature
of the ConvGNP’s scalability is convenient from a practitioner’s point of view. Computational cost at
inference time is important in the context of environmental applications because observations and target
predictions locations may lie on dense grids.

DKL can also be deployed in a meta-learning fashion (Patacchiola et al., 2020), which mitigates
the risk of overfitting that comes with heavily-parameterised covariance functions (Ober et al., 2021).
A direct comparison between the meta-learning abilities of the ConvGNP and DKL has not been
performed and would be a valuable addition to the literature.
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